2. Colocación de esquinas de la primera capa
3. Colocación de aristas de la segunda capa
4. Preparación de la última capa
Para esta parte, daremos la vuelta al cubo de tal forma que la cara amarilla pase a ser la superior. Los pasos son los siguientes:
Cuadro 7: Posibilidades a la hora de colocar la arista
La arista a colocar queda a la derecha. La primera parte de los movimientos se realiza sobre la cara derecha, y la segunda parte se realiza sobre la cara izquierda, con un giro previo de todo el cubo.
A'I'AI - y' - ADA'D'
U'L'UL - y' - URU'R'
La arista a colocar queda a la izquierda. La primera parte de los movimientos se realiza sobre la cara izquierda, y la segunda parte se realiza sobre la cara derecha, con un giro previo de todo el cubo.
ADA'D' - y - A'I'AI
URU'R' - y - U'L'UL
Todo lo descrito antes coloca en su sitio una arista de la capa superior que no contiene el color amarillo, a cambio de llevar la arista incorrecta a la capa superior. No obstante, cabe la posibilidad de que no se encuentre ninguna arista sin amarillo en la capa superior. Eso significa que al menos dos aristas de la 2ª capa del cubo están intercambiadas. Para solucionar este problema, se pueden usar dos veces los algoritmos anteriormente explicados: una vez para llevar la arista incorrecta a la capa superior, y otra vez para colocarla en el lugar correcto. Este proceso viene ilustrado a continuación (Figura 5):
Por último, se puede presentar el caso de que una arista este bien posicionada, pero mal orientada (Figura 6). En este caso, en vez de llevar la arista a la capa superior y luego recolocarla bien, hay otra opción más rápida: se gira el cubo hasta que la arista en cuestión quede a la derecha , y se aplica el siguiente algoritmo:
D2A2FD2F'A2D'AD'
R2U2FR2F'U2R'UR'
Una vez resueltas las dos capas inferiores del cubo, queda la que contiene a la cara amarilla. El método Fridrich requiere memorizar muchos casos distintos llegados a este punto. Aquí vamos a reducir el número de casos a memorizar, pero buscando un equilibrio entre memorización y velocidad (si se reduce demasiado el número de casos, suele ser necesario repetir una serie de movimientos varias veces hasta encontrar un caso conocido, lo cual hace que se tarde más tiempo).
Las imágenes que describen este paso están tomadas desde arriba, en planta, y dejando sólo el color amarillo. Un ejemplo del proceso que se sigue para obtener las vistas en planta y que facilita su comprensión es éste:
Para esta parte, podemos encontrarnos con tres casos:
Cuadro 8: Algoritmos de la preparación de la última capa
Caso
Figura
Algoritmos
1
FT'ADA'D'A'D'A'DAF'T
FB'URU'R'U'R'U'RUF'B
2
FDAD'A'F'
FRUR'U'F'
3
FADA'D'F'
FURU'R'F'
Lo que se muestra en las imágenes del Cuadro 8 son las pegatinas amarillas que, como mínimo, debe haber para poder aplicarse el algoritmo. Es decir, en la cara superior puede haber más pegatinas amarillas, pero nunca menos, para poder usarse esos movimientos. Por ejemplo, en el caso de la Figura 8, se usaría el algoritmo del caso 3 del Cuadro anterior.